
Vlaams Diergeneeskundig Tijdschrift, 2010, 79 Review  117

INTRODUCTION

Palatoschisis or cleft palate is one of the more com-
monly described congenital defects in man and do-
mestic animals. In humans, its prevalence ranges from
0.05 to 0.3% of all pregnancies, depending on popula-
tion, sex and geographical location (Thornton et al.,
1996), while in domestic animals, an average of 0.6
cases per 1000 births has been reported (Noden and de
Lahunta, 1985). In dogs, the occurrence of cleft palate
is more frequently observed in beagles, cocker
spaniels, dachshunds, Labrador retrievers, schnauzers
and Shetland sheepdogs. Brachycephalic breeds can
have up to a 30% risk factor (Ingwersen, 2005).

The presence of a fully developed palate is a typi-
cal feature of mammals (Bulleit and Zimmerman,

1985). The only non-mammalian species in which the
oral and nasal cavities are entirely separated from each
other through the palate belong to the family of the
crocodilians. In these species, the palate permits
breathing while the mouth is submerged under water
(Ferguson, 1981), whereas the presence of a correctly
developed palate in mammals is essentially to allow
the proper swallowing of food and liquids, and to en-
able the suckling of milk by the newborn (Nelson,
2003). 

In an affected individual, alimentary nasal dis-
charge, due to the inability to generate suction and the
presence of an open connection between the oral and
nasal cavities, is one of the first symptoms to be no-
ticed. Food entering the nasal cavity through the de-
fect also causes irritation and inflammation of the nasal
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ABSTRACT

Palatoschisis is a frequently occurring birth defect in man and domestic animals. It is caused by a failure

of the elevation, apposition or fusion of the lateral palatine processes, resulting in the persistence of a slit-like

opening between the oral and nasal cavities. Due to swallowing difficulties, this condition eventually leads to

severe malnutrition and life-threatening aspiration pneumonia unless adequate treatment is provided. The

formation of the palate is the result of a sequence of well-regulated steps. Palatoschisis can result from any

interference with local cell proliferation, differentiation and apoptosis, the aberrant production of

mucopolysaccharides or interference with the active extension of the neck. It results from a single or combined

action of genetic, mechanical and/or environmental teratogenic factors. The complex etiology of a cleft palate,

its potential hereditary characteristics and possible association with other congenital defects should be

carefully considered prior to any corrective therapy.

SAMENVATTING

Palatoschisis of een gespleten gehemelte is een aangeboren afwijking die zowel bij de mens als de huisdieren
frequent wordt waargenomen. De aandoening wordt veroorzaakt door een gebrek in de elevatie, appositie of fusie
van de laterale gehemelteplooien tijdens de embryonale ontwikkeling, waardoor een spleetvormige verbinding tussen
de mondholte en neusholte aanwezig blijft. Zonder adequate behandeling veroorzaken de bijhorende slikproblemen
ernstige ondervoeding en zelfs levensbedreigende aspiratiepneumonie. De vorming van het gehemelte omvat een
complex gereguleerde opeenvolging van verschillende stappen. Palatoschisis kan ontstaan uit eender welke verstoring
van lokale celproliferatie, -differentiatie en apoptose, een afwijkende productie van mucopolysacchariden of een
belemmering van het actief strekken van de nek. Zowel een genetische, mechanische of teratogene omgevingsfactor
of een combinatie daarvan kan aan de basis liggen van een dergelijke afwijking. De complexe etiologie van een
gespleten gehemelte, de mogelijke erfelijke basis en de mogelijke associatie ervan met andere congenitale afwijkingen
dienen in rekening te worden gebracht indien een therapie wordt overwogen.
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mucosa, resulting in sneezing and nasal discharge
(Nelson, 2003). Swallowing difficulties, expressed by
coughing and regurgitation, eventually lead to severe
malnutrition and life-threatening aspiration pneumo-
nia (Ishikawa et al., 1994).

Medical intervention in such cases is therefore
indispensable for the survival of the patient and to gua -
rantee a reasonable quality of life (Griffiths and
Sullivan, 2001; Nelson, 2003). Whereas in human
medicine numerous therapeutic possibilities have been
developed to compensate for or correct palatoschisis,
pets suffering from a cleft palate are usually
euthanized for welfare, financial and/or practical
reasons. In the past, surgical correction of a cleft palate
in animals has been associated with a high failure rate
(Howard et al., 1974). However, newer techniques are
improving the success rates in dogs (Ingwersen, 2005). 

Still, the decision whether or not to perform sur-
gery should be carefully considered, taking all practi-
cal, technical, financial and ethical issues into account.
A thorough knowledge of the normal development and
conformation of the palate and a broad understanding
of the etiology and pathogenesis of the different types
of cleft palate are indispensable in this regard. This ar-
ticle is therefore intended to provide a brief review of
the developmental anatomy of the palate and the path-
omechanisms involved in the schistopalatine syn-
drome, with special reference to the dog.

EMBRYONIC DEVELOPMENT OF THE PALATE

Morphogenesis of the palate

In the early embryo, the primitive mouth or sto-
modeum is covered by the frontonasal prominence,
flanked by the maxillary processes of the first visceral
arches and lined ventrally by the mandibular pro-
cesses, which fuse with each other to form the lower
jaw (Figure 1). 

At the rostral end of the frontonasal prominence,
just dorsal to the stomodeum, two nasal placodes
invaginate to form the nasal pits or nasal sacs. Sub -
sequently, the ventral walls of the expanding nasal sacs
fuse with the roof of the stomodeum, after which these
so-called oronasal membranes degenerate, hereby
crea ting a single oronasal cavity. The dorsal half of the
oronasal cavity is subdivided by a primitive nasal
septum, while its ventral half is mainly occupied by
the voluminous tongue. The dorsal surface of the
tongue is directly apposed to the ventral aspect of the
primitive nasal septum, which is therefore often
referred to as the primitive palate (Noden and de
Lahunta, 1985).

Externally, each nasal pit is circumscribed by two
swellings: a lateral and a medial nasal prominence. On
either side, the lateral nasal prominence is soon
reached by the rostrally expanding maxillary process.
Each maxillary process subsequently bridges the nos-
tril ventrally and finally fuses with the ipsilateral me-
dial nasal prominence. Both medial nasal prominences
expand markedly and eventually contact each other in
the rostral midline (McGeady et al., 2006).

The development and fusion of all these compo-
nents is essential for the correct formation of the nose,
upper lips and upper jaws. After the medial nasal
prominences have fused with each other, they form the
median palatine process, which extends caudally as a
shelf-like projection into the oronasal cavity. This
structure, along with the rostroventral part of the nasal
septum, creates a clear separation between the sto-
modeum and the two nasal cavities in the rostralmost
part of the oronasal cavity and is therefore referred to
as the primary palate. It persists as a small, triangular
structure that corresponds to the rostralmost part of the
definitive palate, in which the incisive bones develop
(Noden and de Lahunta, 1985; Sinowatz, 1991). 

The development of the secondary or actual palate
starts with the development of the lateral palatine

Figure 1. Rostral view of the developing face in the mammalian embryo (schematic drawing). Left: Early stage after
formation of the nasal pits. Right: Later stage after fusion of the maxillary processes with the ipsilateral medial nasal
processes.
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processes, often referred to as the palatal shelves,
emerging from the medial aspects of the maxillary
processes (Figure 2). Both lateral palatine processes
initially grow in a ventromedial direction, thereby oc-
cupying the space between the lateral surface of the
tongue and the mandibular processes. At a specific
time, the palatal shelves elevate to a horizontal posi-
tion dorsal to the tongue, so that their free margins be-
come directly apposed. Almost immediately thereafter,
both palatal shelves fuse with each other and with the
nasal septum, resulting in the definitive separation of
the oral cavity from the nasal cavity and the partition-
ing of the nasal cavity into two separate chambers
(Ferguson, 1988; Thornton et al., 1996; Kang and Svo-
boda, 2005). 

Rostrally, the secondary palate connects with the
primary palate. At their site of fusion, the incisive
papilla, bilaterally flanked by the incisive ducts, de-
velops (Sinowatz, 1991). The mesenchyme in the ros-
tral two-thirds of this definitive palate undergoes
intramembranous ossification, forming the hard palate
(Noden and de Lahunta, 1985), while mesenchyme in
the caudal third expands and develops a muscular core

to form the soft palate (Sinowatz, 1991). The entire
process of palatogenesis in the dog takes place be-
tween the 25th and 28th-33rd day of development
(Noden and de Lahunta, 1985; Nelson, 2003).

Mechanisms of palatal shelf elevation

The actual process of palatal shelf elevation and
fusion takes only a few minutes to a few hours (Dudas
et al., 2006) and is controlled by complex regulatory
mechanisms. The forces that drive the palatal shelf
elevation are primarily intrinsic factors of the com -
posing tissues. A progressive accumulation and hydra-
tion of hyaluronic acid induces swelling of the mesen -
chymal stroma and a decrease in mesenchyme density
(Morris-Wiman and Brinkley, 1993). The orientation
and direction of the resulting expansion of the palatal
shelves is controlled by other components of the
extracellular matrix such as collagen type I (Foreman
et al., 1991; Mansell et al., 2000), but also by the
covering epithelium and its underlying basement
membrane (Morris-Wiman and Brinkley, 1993).

Extrinsic factors also play a major role in the re-
orientation of the palatal shelves. These consist of ac-
tive and passive movement of the tongue (e.g. by
traction on the genioglossus muscles due to the elon-
gation of the lower jaw) and non-palatal muscular con-
tractions such as opening of the mouth, sudden
hyperextension of the neck and swallowing (Brinkley
et al., 1978). The final goal of these forces is to de-
press or retract the tongue so that the space between
the two palatal shelves is cleared, allowing the pala-
tine processes to reorient (Fraser, 1967; Chou et al.,
2004).

Mechanisms of palatal shelf fusion

The size of the lateral palatine processes is such
that as soon as they assume a horizontal position, their
margins are apposed (Noden and de Lahunta, 1985).
Their medial edges are covered with a bilayered
epithelium consisting of a basal cuboidal epithelial
layer commonly referred to as the Medial Edge
Epithelium (MEE) and an outer peridermal layer
composed of flattened cells. During a process called
peridermal peeling, the periderm on the edge of the
palatal shelves is dissolved through apoptosis or
migration of the peridermal cells towards the oral or
nasal surface (Bittencourt and Bolognese, 2000; Dudas
et al., 2006). The underlying MEE is exposed and
acquires the competence to interact with the MEE of
the contralateral palatine shelf (Dudas et al., 2006). 

Disappearance of the midline epithelial seam

Following adhesion of the lateral palatine processes
to each other and to the primitive nasal septum, the
epithelium that once covered the apical surfaces of
these three processes becomes trapped within the
junction site. These cells arrange themselves into the
Midline Epithelial Seam (MES), a double wedge-

Figure 2. Transverse sections through the oronasal
cavity of an embryo at 4 subsequent stages of palato -
genesis (schematic drawing). A: Original position of the
palatal shelves lateral to the tongue, B: Elevation of the
palatal shelves, C: Fusion of the palatal shelves and
formation of the Midline Epithelial Seam, D: End stage
of palatogenesis.
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shaped epithelial cell mass that needs to disappear to
allow mesenchymal confluence and completion of the
process of palatal fusion (Jin and Ding, 2006). The
bases of the two wedges abut on the oral and nasal
surfaces of the palate, respectively, while their edges
are in contact with one another in the palatal center. 

Three different mechanisms are theorized to be
responsible for the disintegration of the MES. Cuervo
et al. (2002) have shown that apoptosis is over -
abundant in the MES and that this programmed cell
death is necessary for the normal closure of the palate.
On the other hand, Griffith and Hay (1992) expe-
rimentally confirmed the observation by Ferguson
(1988) that more than 50% of the MES cells undergo
epithelial-mesenchymal transdifferentiation and trans-
form into fibroblasts. As a third option, Carette and
Ferguson (1992) proposed that the cells of the MES
migrate towards the oral and nasal cavities to
incorporate themselves into the surface epithelium.
Most probably, the disintegration of the MES is
directed by a combination of all three mechanisms
(Martinez-Alvarez et al., 2000).

TYPES OF PALATOSCHISIS

A congenital palatal fissure is the result of the non-
closure either of the primary or of the secondary
palate, or of a combination of the two (Warzee et al.,
2001). In cases in which the primary palate is in-
volved, the anomaly is always associated with defects
of the upper lip (cleft lip, schistocheilia) and upper jaw
(gnathoschisis), resulting in severe facial malforma-
tion. A fuller description and further classification of
this group of defects, however, falls beyond the scope
of this paper.

The term palatoschisis or cleft palate is typically
reserved for defects of the secondary palate only.
Within this group, a further distinction is made be-
tween complete clefts, in which both the hard and the
soft palate are affected (Figure 3), and incomplete
clefts, which usually involve only the soft palate (Sini-
baldi, 1979; Thornton et al., 1996). 

Typically, the palatal fissure is present in the
midline as a more or less large gap connecting the oral
and the nasal cavities, and exposing the nasal septum
in the oral cavity.  In cases where only one of the two
lateral palatine processes manages to fuse with the
primitive nasal septum, a cleft palate will be uni -
laterally present. Bilateral clefts can also occur at the
level of the soft palate. In these cases, a central piece
of tissue, typically containing the palatine muscles, is
present between the two fissures (Sager and Nefen,
1998; Griffiths and Sullivan, 2001).

A special type of palatoschisis is the occult, sub-
mucous cleft palate in which incompletely fused pala-
tine bones are covered by a continuous mucosa (Okano
et al., 2006).

Most commonly, palatoschisis occurs as a solitary
entity. However, in approximately 8% of the affected
dogs, a cleft palate or cleft lip is associated with de-
velopmental anomalies affecting other organ systems
(Ingwersen, 2005), most often the skeletal system
(Nelson, 2003).

ETIOLOGY AND PATHOMECHANISMS

Genetic causes and breed predisposition

In human medicine, 25-30% of the cases of
palatoschisis can be attributed either partially or com-
pletely to a certain genetic component (Leite et al.,
2002). At least 20 different genes in mice and man are
essential for normal palatogenesis (Kang and Svoboda,
2005; Okano et al., 2006). Any disruption of the ac-
tion of these genes during the critical period of palatal
development results in palatoschisis. In such cases, this
defect is mostly combined with other structural or
functional anomalies as a part of a specific syndrome
(Murray and Schutte, 2004).

In dogs, little or no specific data on the genetic
background of palatoschisis can be found in the lite -
rature (Kemp et al., 2009), but the typical aforemen-
tioned breed predispositions strongly suggest a
hereditary basis for this anomaly (Elwood and
Colquhoun, 1997). Moreover, incidence in the off-
spring of two affected animals can rise to as high as
41.7% (Nelson, 2003). Although an autosomal reces-
sive inheritance of palatoschisis has been suggested
(Richtsmeier et al., 1994), the defect is most likely a
complex trait caused by multiple genetic and environ-
mental factors (Murray and Schutte, 2004). Brachy-
cephalic breeds, in particular, are highly susceptible to
any additional disruptive factor, as the growth of the
palatal shelves towards each other is already compro-
mised by the typical broad head and the greater dis-
tance that therefore needs to be bridged by the two
palatal shelves (Warzee et al., 2001).

Factors affecting tongue movement

In the early phases of palatogenesis, the tongue is
situated between the two palatal shelves. It has to
move downwards to allow palatal shelf elevation and

Figure 3. Four neonatal pups from two litters from the
same breeder displaying palatoschisis at the level of the
secondary palate.
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apposition. The retraction of the tongue is mainly
accomplished by a hyperextension of the neck. Any
disturbance of this mechanism will result in a cleft
palate. This failure can be due to hyperflexion of the
embryo caused by oligohydramnios (Fraser, 1967), or
it can occur as a result of cervical malformations
(Ferguson, 1988).  Additionally, certain teratogens
affec ting muscle contractions, such as anabasine, an
alkaloid related to nicotine, can prevent retraction of
the tongue and consequentially cause palatoschisis
(Weinzweig et al., 2008).

Factors affecting palatal shelf growth and elevation

The growth and reorientation of the palatal shelves
relies mainly on sufficient production and accumula-
tion of mucopolysaccharides (Morris-Wiman and
Brinkley, 1993). Certain drugs, such as corticosteroids
and non-steroidal anti-inflammatory drugs, interfere
with the synthesis of these mucopolysaccharides and
with the proliferation of mesenchymal cells, resulting
in smaller palatal shelves that fail to fuse (Fraser, 1967;
Yoneda and Pratt, 1982; Lu et al., 2008). Particularly
in the dog, the administration of acetylsalicylic acid
(Aspirin, Bayer) between day 23 and day 30 after con-
ception results in multiple congenital malformations,
including palatoschisis in the offspring (Robertson et
al., 1979).

The incidence of corticosteroid-induced palatoschi-
sis can be reduced by the administration of pyroxidine
(Vit. B6) or cobalamin (Vit. B12) (Yoneda and Pratt,
1982; Lu et al., 2008).

Uncontrolled diabetes mellitus in the dam is also a
risk factor for the development of a cleft palate. High
levels of plasma glucose interfere with the function of
arachidonic acid, which plays a role in palatal shelf el-
evation (Goldman et al., 1985).

Factors affecting the Medial Edge Epithelium

Apart from their interference with palatal shelf
growth and elevation, glucocorticoids also have an ef-
fect on the proliferation and/or apoptosis of the Me-
dial Edge Epithelial cells. It has been shown that
dexamethasone induces a thickening of the MEE, and
that the MEE does not disappear when the two palatal
shelves ought to fuse (Lu et al., 2008).

Environmental contaminants such as dioxins, in par-
ticular 2,3,7,8-tetradichlorodibenzo-p-dioxine (TCDD),
can also disrupt the proliferation and differentiation of
the MEE, resulting in a cleft palate (Lu et al., 2008).

Role of folic acid

Folic acid (Vit. B11 or Vit. B9) is the synthetic and
stable form of the naturally occurring folates (Tapiara
et al., 2007). Folate supplementation in women in the
periconceptional period has been shown to substan-
tially reduce the risk of neural tube defects such as
spina bifida, and, although hard evidence is lacking, is
has also been suggested that it prevents orofacial clefts

(Johnson and Little, 2008). In dogs, the incidence of
palatoschisis was reduced by 76% after supplementa-
tion of folic acid at 5 mg/day in a population of Boston
terriers (Elwood and Colquhoun, 1997).

Folates play a major role in DNA synthesis and cell
proliferation. Folate deficiencies can lead to mega-
loblastosis and cell death, particularly in highly pro-
liferative tissues (Antony, 2007). Disturbances of the
folate metabolism, for example due to defects of the
methylenetetrahydrofolate reductase (MTHFR) or me-
diated by antiepileptic drugs such as phenytoin, lead
to higher levels of circulating homocysteine (Figure
4). Hyperhomocysteinemia can disturb palatogenesis
by interfering with the normal methylation of certain
important developmental genes (Krapels et al., 2006).
It is also responsible for an increase in oxidative stress,
resulting in more cell damage and apoptosis (Knott et
al., 2003). Finally, the binding of homocysteine to the
folate receptors on the placenta can provoke a mater-
nal immune response, resulting in the destruction of
the folate receptors and a decrease in folate transport
to the fetus (Tapiara et al., 2007).

General teratogens

Apart from causing other major congenital defects,
antimitotics and cytostatic drugs can also induce the
formation of a cleft palate (Verhaert, 2007).  Addi -
tionally, vitamin A, and in particular its metabolite
retinoic acid, is a well known teratogen that is able to
disturb many developmental processes, including
palatogenesis. An excess of retinoic acid results in
saturation or inactivation of several important intra -
cellular or membrane-bound receptors, leading to
cellular damage or reduction in retinoic-acid mediated
cell signaling (Krapels et al. 2006), ultimately resulting
in hypoplasia of the palatal shelves with abnormal
cartilage and bone formation (Fraser, 1967).

The offspring of dams with aberrant cholesterol
metabolism show multiple congenital malformations,
including cleft palate. Cholesterol is essential for the
proper processing of the Sonic Hedgehog protein, a
vital element in many embryonic processes (Krapels,
2004; Murray and Schutte, 2004; Young et al., 2000).

Finally, certain viral infections have also been as-

Figure 4. Role of vitamin B
12

and the enzyme methyle -
netetrahydrofolate reductase (MTHFR) in the folate me-
tabolism.
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sociated with the formation of a cleft palate, mainly as
a result of a postclosure reopening at late fetal stages
or in the newborn (Fraser, 1967). This situation can
correspond with submucous palatal clefts (Dudas et
al., 2006).

DISCUSSION

The complex developmental pattern of palato -
genesis, which spans a relatively long period during
organogenesis, relies on the correct action and
interaction of many different types of embryonic
tissues and processes. For this reason, the formation
of the palate is highly susceptible to the disruptive
effects of a broad range of genetic and environmental
teratogenic factors, which explains the frequent
occurrence of palatoschisis both in man and domestic
animals (Noden and de Lahunta, 1985). As a further
consequence, in individual cases of cleft palate, the
identification of the exact etiological agents is nearly
always an impossible task (Thornton et al., 1996).

Because many of the disruptive genetic or envi-
ronmental factors involved in palatoschisis do not
specifically act on the process of palatogenesis, but
also disturb the development and function of multiple
other structures, the presence of a cleft palate might be
part of a syndrome (Murray and Schutte, 2004;
McGeady et al., 2006). Concomitant congenital de-
fects in other organs should therefore always be taken
into account when considering corrective therapy in
patients with cleft palate.

On the other hand, as the series of events involved
in palatogenesis happens later in embryonic develop-
ment than most other morphogenic events do, it is as
such possible that teratogenic agents interfere solely
with the formation of the palate, without affecting
other organ systems (Noden and de Lahunta, 1985). In
such non-syndromic cases, corrective therapy, which
will be discussed in the sequel paper, might be a fa-
vorable option to prolong the life expectancy and as-
sure an adequate quality of life, although breeding with
the animal should still be discouraged due to the po-
tential hereditary nature of the anomaly, as it has been
shown that cross-breeding with two affected dogs
raises the incidence in the descendants to 41.7% (Nel-
son, 2003). Because of the complex etiology with po-
tential involvement of mechanical or environmental
factors, further breeding with the parents of the af-
fected animal is not immediately discouraged, though
it has to be carefully considered, evaluating the possi-
bility of a hereditary cause in each specific case.
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