Neonatal foal death due to infection with equine arteritis virus in Belgium

Neonatale veulensterfte ten gevolge van een infectie met het equine arteritis virus in België

Laboratory of Virology, Parasitology and Immunology
Department of Pathology, Bacteriology and Poultry Diseases
Department of Reproduction, Obstetrics and Herd Health
Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
Annick.gryspeerdt@ugent.be

ABSTRACT

This case report describes a small outbreak of neonatal foal death in Belgium due to infection with equine arteritis virus (EAV). The outbreak started with one foal suffering from acute dyspnea four days after birth. Despite intensive treatment, this foal died within a few hours. Three weeks later, another foal was born on the same farm in a healthy condition, although placental edema was found. At the age of 10 days, the foal showed acute respiratory distress and severe dyspnea and died shortly after. Post-mortem examination of both foals revealed consolidated diaphragmatic lung lobes with compensatory emphysema. Histologic lesions consisted of a mild acute interstitial pneumonia. Microscopic examination of the allantochorion from the second foal showed a focal necrotizing vasculitis, and immunolabeling demonstrated the presence of EAV antigens in chorionic vascular endothelial cells and macrophages. Upon inoculation of rabbit kidney (RK13) cell culture with a suspension of lung tissue, a cytopathic effect was observed. The agent was identified as equine arteritis virus by means of immunostainings.

SAMENVATTING

INTRODUCTION

Equine viral arteritis (EVA) is an infectious disease in horses caused by the equine arteritis virus (EAV), which is an RNA virus classified in the family of Arteriviridae (genus Arterivirus, order Nidovirales) (Cavanagh, 1997). Serological surveys have shown that EVA infections occur among horses in North and South America, Europe, Australia, Africa and Asia, with considerable variation in seroprevalence among countries and within equine populations (Timoney and McCollum, 1993). The two most common modes of transmission are aerogenic and venereal. In utero transmission, transmission via secretions and transmission via indirect contamination have also been reported (Bryans et al., 1975; Timoney and McCollum, 1993; Holyoak et al., 2008). Within 2 days after infection, the virus spreads rapidly within the lungs and bronchial lymph nodes, followed by dissemination throughout the body via the
blood circulation (McCollum et al., 1971; Henson and Crawford, 1974). A second cycle of infection and replication occurs in endothelial cells of internal organs, causing extensive endothelial damage (Bryans et al., 1957).

Most infections are subclinical. Clinical signs during an outbreak vary widely between individual horses and between outbreaks (de Vries et al., 1996). In adult horses, EVA infections frequently resemble other infectious respiratory diseases, especially those caused by equine herpes viruses 1 and 4 and equine influenza virus (Timoney and McCollum, 1993). Fever and leukopenia are the most consistently observed features, but others like abortion, systemic illness and persistent infection in accessory glands of the reproductive tract of stallions have also been reported (Bryans et al., 1957; Holyoak et al., 1993; Holyoak et al., 2008). In neonates, sudden death, fever, depression, edema, hemorrhagic enteritis and/or severe respiratory distress have been described (Del Piero et al., 1997; Del Piero, 2000).

In Belgium, a severe outbreak of equine viral arthritis abortion in an Arabian stud farm occurred in 2000 (van der Meulen et al., 2001). Cases of neonatal foal death have not been reported in Belgium until now.

CASE HISTORY

The first foal was born after a normal gestation period. Complete placenta expulsion occurred after 3 hours. The foal received anti-tetanus serum (Intervet, Belgium) and prophylactic antibiotics (Cobactan®, 4.5%, Intervet, Belgium). The immunoglobulin concentration in the serum of this foal was >8 g/l 16 hours after birth. Two days later, the mare showed an elevated temperature (39.8°C) and therefore the uterus was flushed with saline. The next day, the foal showed severe dyspnea, without fever. A treatment with ipratropiumbromide (Atrovent®, Boehringer Ingelheim NV, Belgium), ceftiofur (Excenel®, Pfizer, Belgium), oxygen and furosemide (Dimazon®, Intervet, Belgium) was started. No clinical improvement was seen and the foal died a few hours later.

At the same farm, a second healthy foal was born from an 8-year-old Belgian Warmblood mare after 346 days of pregnancy. Placenta expulsion occurred within 20 minutes. The placental weight was increased (8,950 kg) and edema was seen on the pregnant horn. No other placental abnormalities were noticed upon macroscopic examination. Samples from the pregnant horn, corpus and placenta at the level of the cervix were fixed in 10% formalin for histological examination. The foal received anti-tetanus serum (Intervet, Belgium) and prophylactic antibiotics (Cobactan® 4.5%, Intervet, Belgium) were given for 5 days. The concentration of immunoglobulins, which was checked 18 hours after birth, was higher than 8 g/l. Ten days later, the foal was found suffering from tachypnea and tachycardia and died before further clinical examination and veterinary treatment were initiated.

LABORATORY EXAMINATIONS

Gross examination

Post-mortem examination of both foals revealed enlarged, non-collapsed, congested and consolidated lungs with superficial rib imprints. Alveolar, interstitial and focal bullous emphysema was present in the craniodorsal lobes of the second foal. Samples from the lungs were fixed in 10% formalin for histology and immunohistochemistry. In addition, samples from the lungs and spleen were collected for bacteriological examination and samples from the lungs, spleen and liver were collected for virological examination.

Histological examination and immunohistochemistry

Fixed samples were embedded in paraffin, sectioned at 4 µm and stained with hematoxylin and eosin (HE) according to standard techniques.

Histologically, a focal moderately necrotizing vasculitis was found in allantochorionic villi (Figure 1a). Adjacent to this lesion, a moderate infiltrate of neutrophils and lymphocytes was present. Multifocal co-
Agulation necrosis of placental trophoblasts was observed upon microscopic examination. In the lungs of both foals, multifocal necrosis of alveolar and bronchiolar epithelial cells was present. Alveoles were often lined by hyaline membranes (Figure 1b). Overall, the number of alveolar macrophages was increased. Type II pneumocytes were hypertrophied and hyperplastic (Figure 1b). Occasionally, necrosis of the tunica media of medium-sized arteries was observed.

Paraffin sections from lungs and placenta were stained by immunohistochemistry using a mixture of three mouse monoclonal antibodies (mAbs): two mAbs were directed against the GI protein and one mAb was directed against the M protein of EAV (van der Meulen et al., 2001). Staining was performed using Envision-mouse (Dako, Denmark). In addition, samples of liver and lungs were immunostained with biotinylated anti-EHV1 polyclonal antibodies (van der Meulen et al., 2003), followed by Envision+system-HRP (DAB) (Dako, Denmark) for exclusion of equine herpesvirus type 1 (EHV1) infection. Immunolabelling for EAV antigens was positive in the lungs of both foals and the placenta of the second foal. Positive staining in allantochorion was restricted to patchy areas of vascular endothelium and macrophages in the lamina propria (Figure 2a). In the lungs, multifocal, ad random distributed areas of EAV positive cells were mainly localized in the endothelium of alveolar capillaries and occasionally in moderately-sized arteries, as well as in the alveolar macrophages (Figure 2b). EHV1 antigens were not demonstrated.

Bacteriological examination

Standard bacteriological and mycological examinations were performed on the lungs and spleen of both foals. Pathogenic bacteria were not isolated from any of the samples.

Virological examination

Suspensions (20%) of the lungs, spleen and liver were incubated for 1 hour with monolayers of RK 13 cells at 37°C in an atmosphere containing 5% CO₂. Afterwards, the inoculum was replaced by medium and
the cells were further incubated. Rounding and vacuole-
ization of the RK13 cells were observed after 4 days
of incubation, and after 7 days most of the cells were
detached from their support (Figure 3a). No such
changes were observed in the negative control cells.

An indirect immunofluorescence staining was per-
formed on virus-infected RK13 cells and lung tissue
using the three anti-EAV mouse mAbs, as described
above. In a second step, tissues and cells were incubu-
ted with a goat anti-mouse antibody labeled with FITC
(Molecular Probes, Eugene, OR, USA). EAV-positive
antigens were found in the cytoplasm of virus-infected
RK13 cells (Figure 3b) and in the cytoplasm of lung
cells.

DISCUSSION

Although equine viral arteritis (EVA) has a world-
wide distribution, few clinical cases have been report-
ted in Belgium. In 2000, a severe outbreak of abortion
occurred in a Belgian stud (van der Meulen et al.,
2001). The present study describes the first neonatal
foal death caused by EAV in Belgium.

How the outbreak started remains elusive, as both
foals appeared normal at birth. In the first case, the
mare showed fever two days post-partum. The most
common cause for fever after partus is an endometri-
tis. However, in this case the placenta was completely
expulsed and no macroscopic remains could be found
during uteral lavage with saline, although the reliabi-
licity of macroscopic evaluation can be questioned. No
further examination of the placenta was performed. In
the second case, the placenta was edematous and clo-
er examination revealed a focal moderately necroti-
zing vasculitis in the allantochorionic villi. Such
lesions suggest an infectious cause, and an in utero in-
fec tion of the foal (Del Piero et al., 1997). The hypo-
thesis of an infectious etiology was confirmed by
immunohistochemical staining, where EAV-positive
macrophages and endothelial cells were demonstrated
in the allantochorion. Transplacental infections with
EAV during late gestation have been reported, but are
not very common (Vaala et al., 1992; Timoney and
McCollum, 1993). Neonatal deaths associated with na-
turally acquired EVA have also been reported (Doll et
al., 1957; Golnick et al., 1981), along with a sporadic,
isolated case in a foal (Vaala et al., 1992). Hence, to
date, only a few reports of EVA outbreaks are availa-
ble, primarily affecting neonates (Del Piero et al.,
1997; Del Piero, 2000). The histological findings in
the lungs and allantochorion are in agreement with
those reports.

Looking in retrospect, the outbreak described in
this study probably started with an EAV infection in
the first mare, which was introduced without quaran-
tine to the farm to foal. The virus was most likely then
transmitted by the respiratory route to the foal. The sec-
ond mare probably got infected around the same pe-
riod, either via the respiratory route or via indirect
contamination, and it then passed the virus on, in utero,
to its unborn foal. There were no records of other
horses showing fever or other symptoms in the same
stable at that time. Since the infections were mostly
subclinical, other adult horses on the same farm might
have got an EVA infection without being noticed. More
than 40 foals were born healthy on the farm in the
months following this outbreak.

The outbreak of EVA in neonates described in the
present report serves as a warning about the necessity
to include EVA in the differential diagnosis when foals
are presented with fever, depression, edema, respira-
tory distress and/or sudden death. Since the prevalence
of EVA in Belgium seems to be rising, more clinical
outbreaks can be expected in the future. Although vac-
cines are available abroad, they are not yet registered
for use in Belgium. The most important measures in
the event of an outbreak in Belgium are management
strategies such as quarantining new animals and eli-
ininating EVA-positive breeding stallions from bree-
ding populations (Holyoak et al., 2008).

ACKNOWLEDGEMENTS

The authors wish to thank Chris Bracke, Sarah
Loomans, Delphine Ameye and Christian Puttevils for
their excellent technical assistance, as well as Profes-
sor Dr. P. Rottier of the University of Utrecht for pro-
viding the three mouse monoclonal antibodies.

REFERENCES

Bryans J.T., Crowe M.E., Doll E.R., McCollum W.H.
(1957). Isolation of a filterable agent causing arteritis of
horses and abortion by mares; its differentiation from the
equine abortion (influenza) virus. The Cornell Veterina-
rian 47, 3-41.

Cavanagh D. (1997). Nidovirales: a new order comprimi-
ing Coronaviridae and Arterviridae. Archives of Viro-
logy 142, 629-633.

Del Piero F., Pamela A., Wilkins, Lopez J.W., Glaser A.L.
viral arteritis in newborn foals: clinical, pathological, se-
rological, microbiological and immunohistochemical ob-

Del Piero F. (2000). Equine Viral arteritis. Veterinary Pa-
thology 37, 287-296.

break of abortion caused by the equine arteritis virus. The
Cornell Veterinarian 47, 69-75.

de Vries A.A.F., Rottier P.J.M., Glaser A.L., Horzinek M.C.
Virus Infections of Vertebrates, Volume 6: Virus infections
of Equines. Elsevier Science B.V., Amsterdam, p. 171-
200.

Golnick W., Michalska Z., Michalak T. (1981). Natural
equine viral arteritis in foals. Schweizer Archiv für Tier-
heilkunde 123, 523-533.

Henson J.B., Crawford T.B. (1974). The pathogenesis of
virus-induced arterial disease-Aleutian disease and equine

Holyoak G.R., Little T.V., McCollum W.H. and Timoney
P.J. (1993). Relationship between onset of puberty and es-
ablishment of persistent infection with equine arteritis
virus in the experimentally infected colt. Journal of Com-
parative Pathology 109, 29-46.

